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Abstract

e Safety: central for the usage of intelligent
agents in many domains

e _ Inthis paper: learning about dangerous
behavior via stop-feedback in RL
e Probabilistic feedback model inspired by
how humans might provide feedback
e Bayesian inference for inferring constraints

e Experiments:
@ Learning with our proposed feedback

model is efficient

@ Human stop-feedback aligns reasonably
well with our model
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Classical Goal
e Cumulative rewards:
J(m) =E[)_¥'r(s) |7,
=0

e Find optimal policy:

7T = arg max J(m).
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Here: Learning With Constraints

e Rewards r: § —+ R, known

e Constraints c: 8 — R, unknown

e Dangerous states < c(s) >

e Agent should avoid dangerous states
e Find optimal policy for

Tm) =E[ 3 ¥'(rl(s) = clsn) | 7],
=0

Stop-Feedback

e Learn about constraints from stop-feedback
(provided by a human supervisor)
e _ Model how a human supervisor might

provide feedback

P(stop | s, 7)
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e (3: Horizon for reasoning into the future
e «: "Worriedness” of supervisor

e Goal: sample-efficient learning from
stop-feedback

Our Approach

Central Ideas

e Estimate constraints from stop-feedback
e Be Bayesian:

e Encourage exploration

¢ Incorporate prior knowledge
e Featurize environment for scalability:

Major Steps
Action phase
Feedback phase
Update phase
e Compute ¢+!) as posterior via MCMC
e Optimize policy:

nl) = argmaxE [i v (r(s) —¢(s)) || (2)
T =0

Input: maximum number of interactions K
Output: Final learner’s policy %!
/* Initialization */
1: Dgtop 0, Dgate < 0
2: ¢M(s) 0 Vse8
3: ml) « (approx.) optimal policy for r,e!V, cf. Eq. (2)
/* Learner-teacher interaction */
4: foralli=1,...,K do
/* Action & feedback phase */

5: s < S0

6: forallr=1,..., T do

7/ at’”“(i)(s)s Sir1 ~ P | sy ar), rtNrat(St)

8: f < Teacher’s feedback according to Eq. (1)
9: if f = stop then

10: @stop < Dstop U {(s,, @)}

11: break

12: else

13: Dgafe ¢ Dsafe Y {(sr, 1)}

/* Update phase */

14. Learner updates its estimate of the constraints to

ﬁ(if” based on the datasets Dgtqp, D‘safe
15:  #l*1 < (appr.) optimal policy for r,2 1, cf. Eq. (2)

16: return Final learner’s policy 7*!

Experimental Setup

OpenAl Safety Gym
e 1 goal state
e 5 evenly distributed fixed hazards

e Agent can move in the 2d plane (turning &
moving forward/backward)

e Environment is reset when reaching hazard
e PPO; 2" |ayer of critic for feature extraction

Experimental Results

Learning from Synthetic Feedback
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e Agents with constraint inference:

e Achieve higher cumulative rewards
e Violate fewer constraints

Human Feedback

e Survey with 100 volunteers (online)
e Evaluation of 9 videos:

e Episodes with 5000 time steps

e Standard agent colliding with < 1 constraint
e Question:

e Stop-feedback or not

e Time step for feedback

Stop-feedback and collision times
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Model-generated vs human stop-feedback
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e Good alignment of feedback
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